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FOREWORD

The insulation development work described herein, which was conducted
by the Solid Rocket Division of Aerojet-General Corporation, was performed
under NASA Contract NAS3-~11224, The work was accomplished under the manage~-

ment of the NASA Project Manager, Mr. J. J. Pelouch, Jr., Chemical Propulsion
Division, NASA-Lewis Research Center.

Special acknowledgement is accorded to Mr. R. L. Knapp for preparation
and analysis of the insulation material thermal behavior model.
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ABSTRACT

A program to develop a cost-optimized insulation system for large solid
rocket motors was conducted by Aerojet-General Corporation under Contract NAS3-
11224. Four tasks were derived to accomplish the program objective: Task I,
Survey and Screening; Task II, Process Demonstration; Task III, Material Per-
formance Determination; and Task IV, Preparation of 260-in.-dia full-length
motor insulation system Design and Process Plan. Task III is the subject of
this volume of the final report. The candidate materials selected from the
Task I effort were evaluated in five solid-propellant test motors, using V-44
rubber as the control material. The 20~in.-dia test motors operated 632 to
654 psia over a web burning duration of 17.3 to 17.6 sec. Two candidate mate-
rial specimens, plus a V-44 control specimen, were tested in each motor.
Initial Mach numbers and material thickness loss were obtained from pre- and
posttest profile measurements. Plots of material thickness loss rates as a
function of Mach numbers provided a performance comparison of each material
relative to V-44. Performance results also were compared to those obtained
previously in the Task I motor tests. Results indicated that IBT-100, IBT-106,
USR-3800, IBC-111, and IBS-107 performed better than V-44. The performance of
TI-H704B was equivalent to that of V-44, while IBC-101, IBS-109, 40SD-80, and
Avcoat II exhibited erosion resistance poorer than that of V-44, These results
agreed with the data obtained in Task I.

Thermal behavior model preparation showed that analytical treatment of
internal insulation thermal response not only provides realistic estimates of
insulation material performance, but also affords a means of interpreting
experimental erosion data and scaling these results to large motors.

NASA report numbers and corresponding volume numbers are as follows:

CR-72581 Volume I

CR-72582 Volume II
CR-72583 Volume IIT
CR-72584 Volume IV
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I, SUMMARY

7 The objective of the Large Motor Insulation System Development (LMISD)
Program is to evaluate low-cost insulation materials which are applicable to
large solid-propellant rocket motors. Four tasks were derived to accomplish
the planned objective. Task I, which is described in Volume I of this report,
involved a survey of available materials applicable to large motors; selection
of twenty candidate materials, including Gen-Gard V-44 and V-6l as controls;
measurement of candidate material physical, chemical, mechanical, thermal, and
adhesive properties; evaluation of material erosion resistance in three solid-
propellant motor tests; evaluation of property measurement and motor test data;
and selection of twelve materials, including V-44 control, for further evalua-
tion in Tasks II and III. In Task II, candidate materials selected in Task I
were installed into a 54-in.-dia motor chamber. Task III includes material
performance determinations in five solid-propellant motor tests. Task IV is
the preparation of a 260-in.-dia full length motor cost-optimized insulation
system design and process plan, using materials selected on the basis of data
obtained from Taskg II and III,

The following materials were recommended for performance determination
in Task ITI:

Pressure-Cured Trowelable Castable Sprayable

V=44 (control) IBT-100 IBC-101 IBS-107

USR-3800 IBT-106 IBC-111 IBS-109
TI-H704B 405D~80 Avcoat II

The following is a summary of the insulation material specimens tested
in each motor:

S/N,III—l' S/N III-2 S/N II1I-3 S/N II1I-4 S/N III-5
V-44 control V-44 control V=44 control V-44 ontrol V~-44 control
IBC-101 IBS-107 IBT-106 USR-3800 IBT-100
IBS~109 Avcoat II IBC-111 408D~-80 TI-H704B

Phase 1 of Task III included the processing and test of 20-in.-dia
solid-propellant insulation test motors, identical to those tested in Task I.
Two candidate material specimens, plus a V-44 control, were installed into the
aft closure. Pre~ and posttest insulation specimen profiles were measured and
recorded using a Portage Layout Machine. These profile measurements were used
to determine initial Mach numbers at the specimen surfaces and the material
thickness loss. '

Five Task III insulation test motors, identified as S/N III~1 through
III-5 were test fired during February through May 1969.

Page 1
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I, Summary (cont)

S/N I1I-1 S/N III-3 S/N II1I-3 S/N III-4 S/N III-5

Web average pressure, psia 635 632 648 645 654
Maximum pressure, psia 644 643 665 663 673
Web duration, sec 17.6 17.5 17.5 17.5 17.3

Following each test, the motor was visually inspected, the char layer was
removed, and posttest profiles were obtained. Using pre- and posttest profiles,
each material thickness loss was measured at specified locations normal to the
specimen surfaces. Gas flow Mach numbers at the specimen surfaces were calcu-
lated. Thickness loss rates were calculated, and a visual comparison of each
candidate material performance relative to V-44 was obtained by plotting the
thickness loss rate as a function of Mach number, then drawing the most repre-
sentative line through the data points for each material. Material perform-
ance relative to V-44 are summarized as follows:

1. USR-3800 7. IBS-109
2. IBT-100 8. IBC-101
3, 1IBSs-107 9. TI-H704B
4, IBT-111 10. 40S8D-80
5. IBT-~106 11, Avcoat 1II
6. V~44 (control)

The similarity between the thermal decomposition behavior of elastomeric
type materials and ablative plastics used for booster nozzle throats suggests
that a transient charring-ablation computer program developed primarily for the
latter could be applied to internal insulation materials. Thus, a thermal model
was developed in Phase II to include all energy transport processes that occur
in the virgin, decomposition, and fully charred zones; a basis for prediction
of char rates, erosion rates and transient temperature distributions; and a
treatment of the surface regression by combining all modes of removal into an
"effective removal rate'" which is obtained from subscale motor firings. Use of
this data, together with measured values of thermal properties and internal
decomposition rates, provides a means by which the designer can scale insula-
tion material performance to any motoro where the local environment can be
established.

To apply this analysis technique and better understand the internal
insulation response problem, considerable effort is required in the evaluation
of propellant exhaust gas properties, the internal flow field, and the magni-
tude of the convective heat transfer. The recommended procedure for evaluating
each of these factors was outlined.

Page 2
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1. Summary (cont)

The adequacy of the thermal model to predict erosion, char, and thermal
gradients by describing the complicated energy transfer, decomposition, and
pyrolysis gas transpiration processes which occur within the insulation struc-~
ture was indicated by comparison with measured data. It was shown that pre-
dicted material degradation depths were well within the variational limits of
actual posttest measurements over a wide range of heat fluxes. Likewise,
thermocouple data obtained within selected samples indicated reasonable
agreement,

Thus, it was established that analytical treatment of internal insula-
tion thermal response not only provided realistic estimates of material
performance, but also afforded a means of interpreting experimental erosion
data and scaling these results to large motors.

I, INTRODUCTION

A. PURPOSE OF REPORT

This document is the third volume in a series of final reports
dealing with the major tasks of the Large Motor Insulation System Development
(LMISD) Program, Contract NAS3-11224., This series of reports constitute the
LMISD Program final report. This report summarizes in detail the Task III
effort for the LMISD Program.

B. SCOPE OF EFFORT

This report volume summarizes in detail the Task III effort for
the LMISD Program. The following work was accomplished:

1. Five insulation test motors were processes and assembled,
including installation of insulation specimens in the motor aft closure.

2. Five LMISD test motors were statically fired to evaluate
candidate insulation material performance.

3. A material thermal behavior model was prepared.

III. PHASE I -~ VERIFICATION MOTOR TESTING

Five motor tests were conducted to evaluate the performance of the ten
candidate insulation materials selected from the Task I effort. The following
materials were tested:
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IIT. Phase I -~ Verification Motor Testing (cont)
Pressure—Cured Group

V-44 Control, NBR/silica/asbestos
USR-3800, NBR-phenolic/boric acid

Trowelable Group

IBT-100, PBAN-epoxy/Sby03/Asbestos
IBT-106, PBAN-epoxy/Sbo03/Asbestos
TI-H704B, PBAA/carbon black/Asbestos

Castable Group

IBC-101, PBAN-epoxy/Sb203/Asbestos
IBC-111, PBAN-epoxy/Refrasil
408D~80, Polyurethane

Sprayable Group
IBS~107, CTPB/Sbp03/Silica
IBS-109, PBAN-epoxy/Sby03/Asbestos

Avcoat I1I, Epoxy-polyamide
A. TEST MOTOR CONFIGURATION

The LMISD test motor configuration for Task III was the same as
that used in Task I. However, only three insulation material specimens were
evaluated in each motor instead of eight specimens. The test motor configura-
tion is shown in Figure 1.

The Task III motor test plan required five motor firings, with two
insulation material specimens plus a V-44 control specimen in each motor. The
planned material specimen locations are shown in Figure 2. The Task III mate-
rial specimens included thermocouples for temperature measurements during the
test. Each chromel-alumel thermocouple was ranged from O to 2500°F, and located
so that exposure occurred near web burnout. Thermocouples were installed at an
area ratio of approximately 2.2, as shown in Figure 3. For these experiments,
the pre- and posttest specimen profiles were measured with a Portage Layout
Machine, as previously described in Volume I of this final report, and recorded
on a data sheet like the one shown in Figure 4. The profiles of each specimen
in each motor were measured in three locations. The centerline of each of the
three specimens in each closure located at 0, 120, and 240 degrees, with the
V~44 control specimen always located at 0 degrees, as shown in Figure 2. Each
specimen profile was measured at 0, 120, and 240 degrees, and at 45 degrees on
each side of the specimen surface.
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ITII.A. Test Motor Configuration (cont)

The following table shows the materials that were evaluated in each

motor:
Location,
degrees S/N I1I-1 S/N 11I-2 S/N III-3 S/N I1I-4 S/N I1I-5
0 V-44 control V-44 control V-44 control V-44 control V-44 control

75 N/A N/A N/A IBT-106 N/A
120 IBS-109 IBS~107 IBT-106 USR-3800 IBT-100
165 N/A N/A N/A IBT~-100 N/A
240 IBC-101 Avcoat IT IBC-111G 40SD~-80 TI-H704B
285 N/A N/A IBC-111 N/A N/A

For clarity, sketches of the specimen locations in each motor are shown in
Figure 5. In Motor S/N III-3, two formulations of IBC-11l were tested. The
formulation identified as IBC-111G used 0.25-in.-long commercial Refrasil fibers
which were processed through a Mikropulverizer prior to mixing. IBC~11l1l con~
tained Refrasil fibers which were processed in a Waring Blender with DER curing
agent prior to batch mixing. Both formulations were tested to determine if the
processing method affected material erosion performance. In Motor S/N III-4,
the USR-3800 specimen was fabricated from 0.l-in.-thick plies of raw stock.

Two 16-in.-long by 2.0-in.~wide by 1.0-in.-~thick bars were layed-up and cured,
using vacuum bag and autoclave cure method. IBT-100 and IBT-106 were used as
potting materials around the USR-3800, so that additional performance data were
obtained for these materials.

B. TEST RESULTS

1. Motor Performance

The five Task III LMISD motors were test fired successfully
and nominal performance was obtained. Ballistic pressure-vs~time curves are
shown in Appendix I. A ballistic performance summary of all LMISD motors fired
in the program is shown in Figure 6.

2, Material Performance

Pre- and posttest specimen profiles for each material at
three radial locations in each motor are presented in Appendix II.

Using the pre- and posttest profiles shown in Appendix II,

each material thickness loss was measured at 23 specified locations normal to
the specimen surface, as shown in Figure 4. The initial area ratio (A/A*) and
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III.B. Test Results (cont)

initial Mach number at each of the 23 locations in each closure were calculated
from the recorded profiles. Thickness loss rates were calculated by dividing
the measured thickness loss at each location by the web burning duration for
each motor, Initial Mach numbers at the specimen surface, thickness losses,
and calculated thickness loss rates are summarized in Figures 7 through 11.

In an effort to compare visually the relative erosion resist-
ances of the candidate materials, the measured thickness loss rates at three
locations measured for each material are plotted as a function of the initial
Mach number at the specimen surface for each motor in Figures 12 through 16.
These graphs are not intended as a material design guide, but only to show the
relative performance of each specimen, and were prepared by plotting the TLR~
vs-Mach number data summarized in Figurxes 7 through 11, then drawing the most
representative line through the data points at the three locations for each
material. Performance of some of the materials in Task III motors varied from
the performance previously observed in Task I motors, particularly in the per-
formance of V-44 control material. On the other hand, most of the material
performances were similar. To highlight some of the differences that will be
discussed, graphical comparisons of thickness loss rate-vs~initial Mach number
data for materials tested in Task I and IIT motors are shown in Figure 17
through 21.

The erosion rate of the V-44 control varied between Task I and
Task III motors, as shown in the following table:

Calculated Thickness Loss Rates, in./sec

Initial
Mach No. S/N I-1 S/N I-2 S/N I-3A S/N III-1 S/N III-2 S/N III-3 S/N III-4 S/N III-5
0° 45°&315°

.05 .009 -008 .009 011 ,007 .007 .011 .008 .009
.10 .015 011 .013 .022 .021 .019 .023 .021 .020
.15 021 .018 .014 .031 .031 .024 .031 .030 .026
.20 .027 019 016 * .036 .028 .037 .036 031
.25 .032 022 .018 * 042 .031 .039 .040 ,034

* The 0.5-in.-thick V-44 specimen was eroded away at locations aft of the 0.15
Mach number region, thus exposing potting material.

In Task III motors, the V-44 erosion rate generally was higher
than in previous Task I motors. This was attributed to the thinner plies of
V~44 used to build up the Task III control specimen. In Task I motors, the V-44
specimen was fabricated with 0.5-in.~-thick cured sheets bonded together with
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TITI.B. Test Results (cont)

epoxy adhesive. As a result, the initial bondline was 0.5-in. away from the
surface exposed to erosion. O0.l-in.-thick plies were used to fabricate the
0.5-in.~thick specimen in S/N III-1 and III-2. Apparently, V-44 erosion was
accelerated as the bondline layers were weakened by the approaching flame
front. This same bondline~accelerated V-44 erosion pattern was observed in
the performance of sidewall insulation in Motor 260-SL~1. For this reason,
three 0.1-in.-thick plies were used in 260-S5L-2, and a single 0,2-in.-thick
ply was used in 260-SL-3.

As shown in the foregoing table, the S/N III-2 V-44 specimen
had two distinct erosion patterns, The first pattern, measured at O degree,
was much like the performance observed in S/N III-1. The second pattern,
measured at 45 and 315 degrees, was close to the V-44 performance observed in
Motor S/N I-1.

V-44 specimens for Motor S/N III-3, -4, and -5, were fabricated
with three, 0.2-in.-thick plies of cured sheets which were residual from the
260-SL-3 program. The V-44 erosion performance in these three motors was
fairly consistent. There appears to be three distinct V-44 erosion patterns.
The first pattern was observed in Motor S/N I-1 and at 45 and 315 degrees in
Motor S/N III-2. The second pattern was consistent in Motors S/N III-1, III-3,
I1I-4, and I1I-5, and at zero degrees in Motor S/N III-2, A third pattern,
which was different from the two foregoing patterns, was measured in Motor
§/N I-2 and I-3A. There is no apparent reason for the three observed erosion
patterns. As discussed in the Requirement/Capability Analysis section, Volume
IV of this final report, the one-sigma thickness loss rate variation observed
for V-44 rubber in Polaris, Minuteman, etc., is 15 percent. The V-44 perform-
ance data obtained in the LMISD test motors exceeded this value, indicating
that either there was a significant variation in the cure hardness of the speci-
mens or the small nozzle size adversely affected the thickness loss rate
variation,

Performances of the candidate insulation materials are dis-
cussed in the following paragraphs. '

a. IBC~101 and IBS-109 (Motor S/N III-1)

Comparisons of these material performances are shown in
Figure 17 and in the following table:
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III.B. Test Results (cont)

IBC~101 IBS~109

Initial TLR, in./sec TLR, in./sec

Mach No. S/N I-1 S/N 11I-1 S/N I-1 S/N 1I11-1
0.05 0.011 0.014 0.011 0.013
0.10 0.019 0.028 0.018 0.027
0.15 0.031 0.038 0.027 0.036
0.20 0.041 0.044 0.030 0.042
0.25 0.045 0.045 0.029 0.044

For both materials, the measured performance in theTask III motor was better
than that in Task I, which also was the case for the V-44 control. However,
the performance of each material relative to the V-44 control was reasonably
consistent. It is concluded that the erosion rate of IBC-101 and IBS-109
exceeds that of V-44 by approximately 10 to 20 percent.

b. Avcoat II and IBS-107 (Motor S/N III-2)

Comparisons of these material performances are shown in
Figure 18 and in the following table:

Avcoat II IBS~107

Initial TLR, in./sec TLR, in./sec

Mach No. S/N I-2 S/N I1I1-2 S/N I-1 S/N III~2
0.05 0,015 0.011 0.006 0.008
0.10 0.031 0.040 0.009 0.013
0.15 0.046 0.048 0.013 0.016
0.20 0.055 0.055 0.018 0.018
0.25 - 0.056 0.023 0.019

The erosion rate of Avcoat II consistently was 200 to 300
percent greater than V-44, For this reason, Avcoat II was eliminated as a can-
didate material, and a Task IT process evaluation was not conducted. This mate-
rial is more suitable for external insulation applications, such as base-heating
insulation, where gas flow rates are low (<0.01 Mach number).

IBS-107 performance exceeded that of V-44 by 25 to 50 per-~

cent. This material would be a prime candidate insulation material if the pro-
cessing problems involved in spray application were overcome.
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ITI.B. Test Results (cont)
c. IBC-111 and IBT-106 (Motor S/N I1I-3)

Comparisons of these material performances are shown in
Figure 19 and in the following table: :

IBC-111 IBT-106
Initial TLR, in./sec TLR, in,/sec ,
Mach No. S/N 1I-2 S/N 111-3 S/N I-1 S/N II1I-3 S/N 111-4
0.05 0.007 0.007 0.014 0.010 0.009
0.10 0.008 0,011 0.017 0.015 0,016
0.15 0.010 0.015 0.018 0.020 0.022
0.20 0.014 0.019 0.018 0.025 0.028
0.25 0.025 0.024 6.019 0.028 0.033

IBT-106 also was evaluated in Motor S/N III-4, and com-
parison of material performance in Motors S/N III-3 and III-4 are included in
Figure 20. IBT-106 erdsion resistance was approximately 25 percent better
than that for V-44,

There was no measurable performance difference between
IBC-111 material processed with ground and unground commercial Refrasil. The
performance of IBC-111 also was approximately 25 percent better than V-44
control performance.

d. 40SD~80 and USR-3800 (Motor S/N III-4)

Comparisons of these material performances are shown in
Figure 20 and in the following table:

40SD-80 USR-3800

Initial TLR, in./sec TLR, in./sec

Mach No. S/N 1I-2 S/N I1I-4 S/N I-3A S/N I1I~4
0.05 0.013 0.015 0.004 0.004
0.10 0.023 0.029 0.004 0.006
0.15 0.033 0.031 0.005 0.003
0.20 0.035 0.032 0.005 0.003
0.25 - 0.033 0.006 0.002

High material erosion was experienced by 40SD-80 in rela-
tively low gas velocity regions (<0.l15 Mach No.). As a result, the area ratios
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II1.B. Test Results (cont)

were increased to such an extent that further thickness loss was minimal.

This accounts for the break in the TLR-vs-Mach number curves at a Mach number
of approximately 0,10, This condition was true in varying degrees with all
materials tested, but was most pronounced with 40S8D-80, The high erosion rate,
particularily at low Mach numbers, makes 40SD-80 a less desirable material for
large motor insulation system applications.

Pressure-cured USR-3800, like V-61, exhibited exceptional
erosion resistance, and, also like V-61, contains a high percentage of boric
acid filler. Materials with high boric acid filler concentrations experience
weight-gain and subsequent swelling due to moisture absorption. In the LMISD
program, it was necessary to quench the motor after each test, thus exposing
USR—-3800 and V-61 to high moisture environments. The actual erosion rates then
were masked to a certain degree by material swelling. Data from stop-start
motor tests, where combustion termination was accomplished by rapid depressuri-
zation rather than by water quench, show that the performance of USR-3800 is
approximately 100 percent better than V-44.

e. TI-H704B and IBT-100 (Motor S/N III-5)

Comparisons of these material performances are shown in
Figure 21 and in the following table:

TI-H704B IBT~100

Initial TLR, in./sec TLR, in./sec

Mach No. S/N I-3A S/N 1II-5 S/N I-1 S/N I1I-4 S/N III-5
0.05 0.009(est) 0.010 0.006 0.006 0.009
0.10 0.021 0.023 0.012 0.009 0.016
0.15 0.040 0.030 0.017 0.012 0.021
0.20 0.052 0.036 0.018 0.014 0.025
0.25 - 0.042 0.018 0.016 0.028

When the results of the first motor test including TI-
H704B were analyzed, it was suspected that the properties of the TI-H704B
sample received for Task I evaluation were not indicative of this material.
The measured tensile strength and Shore A hardness were 123 psi and 31, re-
spectively. This tensile strength value was lower than the 175 psi reported
by the supplier. This conclusion was verified in Task III, as shown in the
foregoing table. The thickness loss observed in Motor S/N III-5 more nearly
approached the performance reported by the supplier.
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III.B. Test Results (cont)

Performance of IBT-100 was from 50 to 100 percent better
than that for V-44, This same performance relationship was observed in Motor
260-SL-3 and in the stop-start motor insulation development program. The per-
formance characteristics of IBT-100 make this material a prime candidate for
large motor dome and nozzle insulation.

IV, PHASE 11 -~ THERMAL BEHAVIOR OF INTERNAIL INSULATIONS

In general, the solid propellant motor designer is faced with the
problem of defining the internal insulation type and amount for a wide variety
of motors, operating conditions and/or environments. The criteria upon which
this choice must be made depend primarily on the type of motor; i.e., end
burner, stop-start capability, duration, propellant type, chamber pressure, etc.
Each of these require different considerations; for example, it is recognized
that upper stage motors are relatively sensitive to weight penalties thus insu-
lation thickness and propellant loading become important items. In the design
of case insulation for booster motors, it is recognized that residual weight is
of lesser importance than cost or ease of fabrication. Thus, the need for a
rigorous evaluation of insulation requirements, such as tapering or contouring
to reflect the duration of exposure in local areas and minimizing insulation
case operating temperatures, is not absolutely necessary, and as per the current
practice, the insulation is designed with a large safety factor included. On
the other hand, due to the large quantities of insulation used in booster motors,
consideration of the cost per pound and total cost of material require that the
"factor of safety" not be excessive. In addition, the insulation type and amount
required for booster motors obviously must be evaluated and scaled from subscale
firings. In each case, especially for the purpose of scaling subscale data,
there is a need for describing analytically the thermal response of internal
insulation when exposed to the local environment of large booster motors. This
model must include prediction techniques which encompass all modes of heat trans-
fer, i.e., conduction, convection and radiation, as well as the mass transfer of
decomposition products away from exposed surfaces.

Appendix III summarizes the findings of an analytical study of elastomeric
insulation performance conducted in support of the LMISD Program. The computer
techniques which can be utilized for evaluating internal insulation designs are
discussed and comparison of predicted and actual firing results presented. This
information has been divided into four main categories:

~— Heat fluxes or environment

Thermal behavior

—— Data reduction

— Thermal response calculations
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IV. Phase II - Thermal Behavior of Internal Insulations (cont)

The first pertains to the local environments to which inernal insulation mate-
rials are exposed. Important criteria include gas-particle flow field, convec-
tion, radiation and the influence of oxide particle impaction. Secondly, the
analytical treatment of internal response of the insulation to the environment
is discussed. Method of predicting erosion, char growth and thermal profiles
both during and subsequent to the exposure time are outlined. Third, the data
reduction of laboratory experiments, such as thermal property measurements and
thermo-gravimetric analyses, plus the utilization of erosion rates obtained

from actual firings, are discussed. Techniques which provide realistic meaning
to both material property measurements and the methods of acquisition for inclu-
sion into the analytical model are outlined. Fourth, the thermal response of
several candidate materials when exposed to the above environment are predicted
and pertinent results discussed. This includes the internal heat-transfer mech-
anism as well as the interactions of chemical and/or mechanical material removal
at the surface.

Based on the discussion of the thermal response predictions for booster
motor internal insulations presented in Appendix III, the following comments
are noted.

The similarity between the thermal decomposition behavior of elastomeric
type materials and ablative plastics used for booster nozzles suggests that a
transient charring-ablation computer program which has been developed primarily
for the latter, could likewise be applied to internal insulation materials.
Thus, a thermal model has been developed to include (1) all energy transport
processes that occur in the virgin, decomposition and fully charred zones,
(2) a basis for prediction of char rates, erosion rates and transient tempera-
ture distributions, and (3) a treatment of the surface regression by combining
all modes of removal into an "effective removal rate" which is obtained from
subscale motor firings. Use of this data, together with measured values of
thermal properties and internal decomposition rates, provides a means by which
the designer can scale insulation material performance to any motor where the
local environment can be established. The procedure is to evaluate a scaling
factor, B', which relates the measured regression rates for a particular mate-
rial with the magnitude of the local thermal environment. It is assumed this
parameter remains invariant, not only for a wide range of heat fluxes within a
given motor, but also over a similar range of values between different motors.

To apply this analysis technique and better understand the internal
insulation response problem, considerable effort is required in the evaluation
of propellant exhaust gas properties, the internal flow field, and the magni-
tude of the convective heat transfer. The recommended procedure for evaluating
each of these factors is outlined. However, alternate or simplified techniques
could be used for scaling purposes provided they are applied in a consistent
manner.
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IV. Phase II -~ Thermal Behavior of Internal Insulations (cont)

The adequacy of the thermal model to predict erosion, char and thermal
gradients by describing the complicated energy transfer, decomposition and
pyrolysis gas transpiration processes which occur within the insulation struc-
ture is indicated by comparison with measured data. It is shown that predicted
material degradation depths are well within the variational limits of actual
posttest measurements over a wide range of heat fluxes. Likewise, thermocouple
data obtained within selected samples indicate reasonable agreement.

Thus, it has been established that analytical treatment of internal
insulation tnermal response not only provides realistic estimates of material
performance, but also affords a means of interpreting experimental erosion data
and scaling these results to large motors.
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Summary of Insulation Specimen Performance Data, S/N III-1
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Summary of Insulation Specimen Performance Data, S/N III-2
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Figure 9
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Figure 10
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Figure 11



NASA CR-72583

AT

S

e
e e

S pEhciRmei ;

Motor S/N III-1, Thickness Loss Rate-vs-Initial Mach Number
for IBS-109, IBC-101, and V-44 Control

Figure 12
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Motor S/N III-2, Thickness Loss Rate-vs—Initial Mach Number
for Avcoat II, IBS-107, and V-44 Control

Figure 13
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Motor S/N III-3, Thickness Loss Rate-vs—Initial Mach Number
for IRT-106, IBC~111 and 111G, and V-44 Control
Figure 14
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Motor S/N III-4, Thickness Loss Rate-vs-Initial Mach Number
for 40SD-80, IBT~106, IBT-100, USR-3800, and V044 Control

Figure 15
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Motor S/N III-5, Thickness Loss Rate-vs-Initial Mach Number
for TI-H704B, IBT-100, and V-44 Control

Figure 16
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Comparison of TLR-vs-Initial Mach Number Data for IBS-109,
IBC-101, and V-44 Controls in Motors S/N I-1, I-2, and III-1

Figure 17
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Comparison of TLR-vs~Initial Mach Number Data for IBS-107,
Avcoat II, and V-44 Controls in Motors I-1, I-2, and III-2

Figure 18
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Comparison of TLR-vs-Initial Mach Number Data for 40SD~80, USR-3800,
Figure 20

IBT-106, IBT-100, and V-44 Controls in Motors I-1, I-2, III-3, and III-4
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Comparison of TLR~vs-Initial Mach Number Data for IBT-100,
TI-H704B, and V-44 Controls in Motors I-1, I-3A, and III-5

Figure 21
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BALLISTIC PERFORMANCE CURVES FOR
TASK 111 LMISD TEST MOTORS S/N I11-1 THROUGH S/N I11-5
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APPENDIX [

INSULATION MATERIAL SPECIMEN PRE- AND POSTTEST PROFILES,
MOTOR S/N I11-1 THROUGH S/N I11-5
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Motor S/N III-1, V-44 Specimen Profile
Figure 1
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Motor S/N III-1, IBS-109 Specimen Profile
Figure 2
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Motor S/N III-1, IBC-101 Specimen Profile
Figure 3
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Motor S/N III-2, V-44 Specimen Profile
Figure 4
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Motor S/N III-2, IBS-107 Specimen Profile

Figure 5
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Motor S/N III-2, Avcoat II Specimen Profile
Figure 6
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Motor S/N II11-3, V-44 Specimen Profile
Figure 7
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Motor S/N III-3, IBT-106 Specimen Profile

Figure 8
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Motor S/N III-~5, TI-H704B Specimen Profile
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I. HEAT FLUXES OR ENVIRONMENT

To provide a realistic basis for any thermal response investigation
it is necessary to have available certain data on the properties of the heat
transfer media. This includes the exhaust gas composition in any region of
interest, thermal properties (specific heats, thermal conductivity), trans-
port properties (diffusion coefficients, viscosity), and flow field analysis.

A, EXHAUST GAS COMPOSITION AND TRANSPORT PROPERTIES

For evaluating transport properties, use is made of the chemical
specie mole fraction data generated by analytical methods. Figure 1 depicts
the gas composition for the booster propellant ANB-3254. These data, together
with the local pressure and temperature of the mixture in the chamber, are
used to obtain theoretical values of specific heat, absolute viscosity, ther-
mal conductivity, Prandtl number and diffusion coefficients. The particular
program and method of obtaining these properties represent a rigorous devel-
opment of the kinetic theory of monocatomic molecules. The development of this
theory (Reference 1) considers the potential energy of interaction between the
colliding molecules to be defined for simple non-polar molecules by the Leonard-
Jones potential. This method is first applied to each individual specie to
obtain the viscosity and thermal conductivity for the pure gases. Subsequently,
these data are modified by the use of combining laws which are again derived
from kinetic theory applied to multi-component gas mixtures(1), The results
for the transport coefficients obtained by this method apply strictly to gases
without internal degrees of freedom. Since the internal structure of a mole-
cule will influence the transport of energy, the primary effect will be in the
value of thermal conductivity. Thus, any additional correction is subsequently
applied to the thermal conductivity to take into account the internal structure
of the molecules. The second factor is often referred to as the 'Eucken"
correction.

Transport properties evaluated in the above manner for the pro-
pellant composition of Figure 1, are tabulated below.

Pressure, psia 500
Temperature, °F 5626
Specific heat, Btu/lb°F 0.493
Viscosity, 1b/ft sec 0.614 x 107°
Thermal coﬁductivity, Btu/hr°F ft 0.227
Prandtl number 0.479

The above data represent values for the gas phase only. Inclusion of metal
oxides are considered only in that they affect the chemical composition of
the gas mixture.
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I. Heat Fluxes or Environment (cont)

B.  FLOW FIELD ANALYSIS

Since the convective heat transfer is dependent on the local mass
fluxes (product of local density and velocity component parallel to the wall),
this flow field is required to facilitate thermal calculations. The follow~
ing discussion pertains to the method which is considered adequate for cal-
culating the local surface mass fluxes in the chamber.

Since the test motor is designed to incorporate an end-burning
grain, flow concentrations are eliminated and the initial flow streamlines
are uniform and axisymmetric. Thus, the use of one-dimensional isentropic
flow relationships is considered applicable in the regions of interest. This
method in addition to its obvious ease of calculation is noted to provide
reasonable estimates over more rigorous methods such as potential flow theory
in areas where the wall curvature is not excessive. Regions which satisfy
this criteria are nozzles with a long gradual approach (blast tube) and/or
an entrance with a small convergent angle.

Since the entrance of the test nozzle falls in the category, the
assumption is made that the velocity and other properties vary along and not
across streamlines. Using the mass continuity relationship and the fact that
the maximum mass flow is dependent only on the upstream pressure, the local
mass flux becomes a function of area ratio only,

A

t
thus, (pv)local - Alocal (pv)max
and, (OV)maX = CE. (Equation 1)
(pv)local = CchAt/Alocal

C. HEAT TRANSFER CRITERTA

Having discussed the preliminary data requirements, i.e., the
exhaust gas composition transport properties and the local flow field, there
remains the problem of establishing the net heat flux from the two-phase, high
temperature exhaust gas to the exposed surfaces of the chamber. The basic
mechanism which govern this energy transfer can be placed in three categories:

- convection from the gases

- radiation for metal oxides (particles)

- energy due to particle impingement
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I.C. Heat Transfer Criteria (cont)

The methods currently used to evaluate each mode of heat trans-—
fer are discussed in the following paragraphs.

1. Convection

The rate of heat transfer between any high-velocity fluid
and its bounding surfaces is governed by an equation of the form,

q, = hc (TBL - Tw) (Equation 2)

Thus, to predict convection heat fluxes, the driving temperature, T__, the
appropriate coefficient, h , represent the unknowns that must be evaluated.
The instantaneous wall temﬁerature, T , usually is known or it can be com-
puted as part of a transient thermal gnalysis.

A standard approach has been adopted to evaluate the driving
temperature. From the well established boundary layer concept, where the
flow velocity is retarded as the wall is approached, an energy balance indi-
cates the maximum temperature the surface could attain to be slightly less
than the total temperature of the surrounding fluid.

Since high pressure nozzle flows are usually in the turbu-
lent regime, the driving temperature can be expressed in terms of an isen-
tropic exponent and the local Mach number by,
T e | 2+ -y e300

To io 2 + (y -1) M2

(Equation 3)

From this expression, it is noted that in the chamber where
the Mach numbers are low, the temperature that should be used for convection
analysis becomes the theoretical flame temperature.

TBL n To (Equation 4)

) The method that will be used for heat transfer coefficients
is essentially the boundary layer growth method derived by Elliott, Bartz,
and Silver (Reference 2). This procedure is directed toward axisymmetric
nozzle flowsy it can be applied to chambers if the internal envelope forms a
continuous upstream extension of the nozzle. Briefly, this method considers
the effect of pressure gradient on the simultaneous solution of the momentum
and energy equations. The boundary layer shape parameters are approximated
using a one-seventh power profile of velocity and stagnation temperature,
while skin friction and Stanton numbers are evaluated as a function of the
boundary layer thickness by use of Van Karman's form of the Reynolds Analogy.
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I.C, Heat Transfer Criteria (cont)

2. Radiation

In analyzing the erosion and/or temperature predictions, the
thermal radiation between the exhaust products and the exposed wall can be
neglected. This conclusion has been substantiated numerous times by com-
paring analytical temperature prediction, which ignores radiation, with tem-
peratures measured in a variety of rocket motors. The apparent anomaly in-
troduced by this assumption is obvious if a simple blackbody radiation inter-
change calculation is performed for a particle cloud with high emisgivity at
6000°R and a wall of 4000°R. The resulting value of heat flux is on the order
of 500 Btu/sec-ft? which is approximately the same magnitude as the hot wall
convective heat fluxes. From this prediction, it is suggested that a "blocking'
of the potential heat flux actually occurs in the particle cloud.

Development of the analytical model and techniques for calcu-
lation of particle radiation effects has been completed. The significant
assumptions incorporated in this model are as follows: The solution considers
the radiant heat transfer between the plate and participating medium, and
within the medium (an anisotropically scattering, absorbing, and emitting
medium), convective heat transfer within the medium and between the turbulent
boundary layer and the plate, and the energy balance which relates the tem-
perature gradient parallel to the plate with the heat flux normal to the plate.
The resulting computer program, which represents an analytical estimate of the
net absorption, emission, and reflection properties of the individual parti-
cles within the cloud, indicated a sharp temperature drop exists near the
cooler wall. It is this cooled particle layer that causes the radiation
blocking effect and lowers the radiation heat flux to a value less than 1/20 of
the isothermal blackbody calculation. Since the added complexity of esti-
mating the effective emittance for each analysis station is not warranted
because of the small contribution it is considered valid to ignore the radi-
ation contribution in analyzing the heat flux to the exposed surfaces during
a firing.

3. Particle Impingement

In solid propellant chambers, the particle impingement prob-
lem has not been treated analytically. The usual approach is to ignore the
problem until its importance is recognized or until qualitative indications
of the problem are obtained from flow field analysis and cold flow experiments.

The analytical effort that has contributed only slightly
to the understanding of the impingement problem is the determination of par-
ticle trajectories from a knowledge of the gas flow field. The usual pro-
cedure is to first approximate the gas—flow field by any of the previously
discussed methods (potential flow, cold flow). Then, using the second law
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I.C. Heat Transfer Criteria (cont)

of motion and an appropriate drag law for various sized particles, the velocity
and direction of each individual particle can be traced through the chamber to
predict local areas of impingement. This technique revealed that entrance
regions could be designed to minimize the effects of particle impacts. . For
example, if the wall curvature is gradual the particle impaction can then be
ignored. Also, grain design has an important influence on impaction. It was
found, for example, that cylindrical ports or end-burning grains were desirable.
The role of particle impingement is therefore believed to be much less import-
ant than either the radiation or convection contribution.

In summary, for this design application the net heat flux to
the insulation surface is governed solely by Equation 2. The local heat trans-
fer coefficient, h , evaluated using a boundary layer growth solution and one-
dimensional flow field is given as a function of nozzle axial length in Figure
2. Also, presented in this figure is the Mach number distribution which to-
gether with an isentropic exponent (y = 1.2) characterizes the flow field.

Each of these curves represent values for the original, non-eroded contour

are noted to vary within its test section between values of 40 to 1300 Btu/hr/
£ft2°F for the heat transfer coefficient and 0.005 to 0.40 for the Mach number.
This wide range of values likewise provides for a wide range of test data on
material thermal performance.

In addition, it is noted that by scaling surface regression
from actual motor firings, as is done in this program, the contribution of
radiation and particle impacts is inherent in the data and, accordingly, will"
be included in any scaled insulation design. Thus, particle effects, etc.,
are not completely ignored in this model.

The particle mass flux, however, is included in the total
mass flow of propellant (See Equation 1).

II. THERMAL BEHAVIOR

Typical insulation materials for large booster application are composites
that consist of elastomeric polymers and inorganic fillers. 1In the analytical
treatment of such a composite, each component is considered to have a fraction
that decomposes when it is heated and a residual (char) that remains after
decomposition. In discussing the role of the various components, it is con-
venient to divide the material into three distinct zones, which are the wvirgin
material, the decomposition zone, and the fully charred zone. In the virgin
layer, the thermal transport phenomena are relatively simple. Since tempera-
tures are relatively low, there are negligible changes in material properties
and the thermal response is defined by simple conduction and absorption of
sensible energy.
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II. Thermal Behavior (cont)

Within the decomposition zone, the material response becomes consider-
ably more complex. The elastomeric material decomposes by a kinetically
controlled process that is observed to be time- and temperature-dependent.

As the temperature increases, the decomposition also increases and subsequently
results in substantial weight loss (up to 907% for some materials).

The rate at which the density of the solid phase changes (also the gas
evolution rate) is obtained from the rate equations that describe the decomposi-
tion rates of the solid phase components. These relations may be written in
the following form:

i
—— = =B, p [pi pn] [ - E/RTJ (Egquation 5)
170, T e
i

As decomposition governed by Equation 5 begins, two energy transfer
modes are present. In addition to the usual conduction, energy is similarly
transported by the decomposition gases that transpire toward the heated sur-
face. It is assumed that these pyrolysis gases are in local thermal equili-
brium with the char. Thus, the magnitude of the energy associated with the
internal ablation process is a heat of decomposition and a sensible enthalpy
increase of the gases. In general, it is believed that the occurrence of
individual reactions may be slightly exothermic; however, if the sensible
enthalpy 1is considered to be the net effect, the decompositon zone is endo~
thermic.

In the third, or char zone, characteristics similar to those in the
decomposition zone can be expected. As a result of very high temperatures,
continued decomposition of organic components and some decomposition of in-
organic components, such as the loss of occluded water in asbestos fillers
used in some material formulation, will occur. The final product after com-
plete decomposition will consist of a low density char made up of carbonaceous
residue and the remaining filler material. The modes of energy transfer and
absorption will be similar to those that occur in the decomposition zone.

Thus far, the discussion pertains to the response the internal struc-
ture of a typical insulation material produces when it is exposed to solid
propellant exhaust products. As exposure continues, surface material is lost
by a process commonly identified as erosion. The relative performance there-
fore becomes a measure of how well a particular material can resist decomposi-
tion and subsequent removal. Aerojet has adopted the term "surface regression"
to describe the various modes of surface loss. These could include surface
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II. Thermal Behavior (cont)

chemical reactions (oxidation of carbon residue) with the propellant exhaust
products, erosion from pressure and shear forces acting on the low density
char layer, structural failure of the char as the result of thermal stresses,
spallation resulting from pressure buildup within the decomposition zone, and
combinations of chemical and mechanical modes acting on the exposed surface
(i.e., particle impacts).

To accurately analyze and evaluate each material removal mode would
be a formidable task. This is so because a detailed knowledge of the material's
kinetic behavior is required to formulate a model that would clarify the abla-
tion process sufficiently. In lieu of what could be termed a rigorous model
for surface regression, a provisional model is proposed. This model will in-
clude all energy transport processes that occur in the virgin, decomposition
and char zones suggested in the above discussion of the physical model, a
basis for the prediction of char rates, erosion rate and transient tempera-
ture distributions, and a treatment of the surface regression by combining
all modes of removal into an "effective removal rate', which will be obtained
from actual motor firings. A detailed discussion of the proposed model follows.

The insulation type and amount required for a booster motor must obvi-
ously be scaled from subscale firings or obtained from applicable large motor
erosion data. In either case, the insulation capability is better understood
if there are analysis techniques available that provide realistic estimates of
thermal penetration, decomposition and the mass transfer of reactants and pro-
ducts away from the exposed surfaces. In this manner, the insulation designer
can scale internal insulation requirements to a wide variety of motor operat-
ing conditions.

The particular type of computer program which has been successfully
utilized primarily for evaluating nozzle ablation can likewise be used for
elastomeric type materials. This is due to the fact that, in general, the
thermal degradation is analogous to the resin reinforced ablative materials.
Only the rates of decomposition and regression differ. The type of computer
program best suited for this analysis is basically the 'Vidya'" program
described in Reference 3. This particular program is available to industry
contractors and as previously mentioned has been widely used for analyzing
ablative nozzles for solid propellant boosters. A modified version, is
presently being used by Aerojet, to predict the rate of material removal
(erosion), internal degradation rate (charring), and the transient temperature
distributions in chamber insulations. The analytical treatment of these
quantities requires first that the local environment be evaluated at the
exposed surfaces (as discussed previously). Subsequently, these data are
used as the boundary conditions to solve the one-dimensional transient heat
conduction equation. The solution of this well known relationship defines
the temperature distribution within a nonreacting body. For ablative materials
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II. Thermal Behavior (cont)

that decompose in depth, additional equations must be considered to account
for the decomposition reactions and the transpiration of the gas—phase decom—
position products. The energy equations and the corresponding mass balance
relations are therefore solved simultaneously by the above program. A com—
plete derivation of the appropriate equations have been reported by several
sources and will not be repeated here, see for example References 3 or 4.

The particular form of the energy equation, which contains the ratio of
the mass transfer coefficient to the convective heat transfer coefficient
(equivalent to Lewis Number to the 2/3 power), allows by proper choice of Lewis
Number a relationship between heat and mass transfer. If it is assumed that
the surface material is removed solely by a reaction characterized by a dif-
fusion~limited process, and the Lewis Number is taken as unity, then the mass
transfer and convective heat transfer coefficients exactly equal. The result-
ing erosion rate then becomes proportional to the magnitude of the local heat
transfer coefficient. By plotting the experimental surface mass regression
rate as a function of local convective heat transfer coefficient, the result-
ing slope then becomes the scaling parameter (g, /h'.). With this parameter,
it is possible to predict erosion in any motor in which the local value of
heat transfer coefficient is accurately known.

In brief, the similarity between the thermal response of ablative
plastics used as nozzle components and filled elastomeric type materials
suggests that the charring-ablation program is a realistic approach to defin-
ing the mechanism of degradation that occurs when internal insulations are
exposed to propellant exhaust products. The data input requirements include
experimentally determined mass transfer rates which are proportional to the
local heat transfer, plus, internal decomposition rates which are character-
ized by Equation 5, where the particular kinetic constants are obtained from
thermogravimetric analysis (TGA) measurements.

The utility of the charring-ablation program to define the mechanism
of degradation of elastomeric materials will be discussed in the following
sections.

III. EXPERIMENTAL DATA REQUIREMENTS

In order to predict the thermal response of a given material in a parti-
cular chamber environment by the analytical methods discussed above it is nec-
essary to have availlable, thermal conductivity, specific heat, density, decom-
position rates, and mass transfer correlation. The first three are typical
thermal properties which are required to solve the transient conduction equa-
tion. All values are directly measurable and for a large number of elasto-
meric material they are presented over a moderate temperature range in Phase I.
The remaining two properties are the variables which define the total heat
degradation characteristics of the material as discussed earlier.
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III. Experimental Data Requirements (cont)

The rate of decomposition as a function of temperature can be expressed
in the form of an Arrhenius relation as given by Equation 5. Determination of
the constants B, n and E' are accomplished by curve fitting the experimental
TGA data for a particular material at a constant heating rate. Typical TGA
curves are presented in (Phase I). These data represent instantaneous weight
plotted as a function of sample temperature for a heating rate of 20°c/min.

It is noted that several techniques exist for evaluating the constants, see
for example Reference 5. The procedures used here consists of an IBM-1130 com-
puter program (Reference 4) which passes an equation of the form,

d=  _ A n o |- E
a0 ) P77

W \
f/W e } (Equation 6)
o f

1

where « = weight fraction [W

8

temperature rate in T = O + To

through three points on the experimental TGA curve thus providing three equa-

tions for evaluating the three unknown kinetic parameters A, n and E'. Apply-
ing these results to the form of Equation 5 it is necessary to define,
1-n
5o A L
608 W
Y= n (Equation 7)
E= E'R

Typical results for several materials are presented in Figures 3 to 10. Each
figure contains the actual TGA data and the best curve fit of the form of
Equation 6. For the candidate materials considered, most could be reasonable
approximated by a single reaction, the exceptions being USR-3800 and TI-H704B.
These materials exhibited two distinct reactions and as a result two sets of
curves are required to define their overall decomposition rates. This is
accomplished by applying the curve fit program twice with the final weight

of the first reaction defined as the initial value for the second equation.

A summary of the rate constants for nine candidate materials are presented

in Figure 11. It is noted that in order to use these data in the charring-
ablation program the correction factors given in Equation 7 must be applied.
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ITI. Experimental Data Requirements (cont)

During the LMISD Program eight motor firings were made for the purpose
of obtaining material loss rates over a wide range of flow conditions. At
high area ratios in the aft closure, the flow velocities and attendant shear
forces acting on the surface are low and material loss (surface erosion) may
be small. Conversely, near the throat the char layer is easily removed and
high regression rates will occur. Thus, subsequent to a firing, the nozzle
is sectioned, the various test specimens are scraped to remove all loose
material, and measurements of total erosion obtained by the difference in
pre~ and post-firing contours. The depth now represents the thickness of
material which was removed during the firing (erosion) plus a portion of de-
composed (char zone) material which is formed not only during the firing, but
also during the subsequent cooling period. Dividing this depth by the action
time which gives an average thickness loss rate (TLR) does not represent the
true char formation rate. This is especially true in the above noted high
area ratio regions where it can be shown that the char rate is not linear but
varies as the square root of time. This criterion could introduce large
errors in terms of scaling char rates between two motors if the firing dura-
tion is less than that of the motor from which the data was obtained. This
situation will be discussed further in the following paragraph.

In addition to the influence of the char zone growth on the measured
TLR, a second criterion which must be included in the interpretation of the
measured data is the variation in heating rate which occurs as the result of
local erosion. Since the throat area is constant, the local area ratio (Mach
number) varies as the material regresses and near the throat region, this
variation could be in excess of 50%. Likewise, as noted in Figure 2, the
local heat transfer coefficient will change by a similar value since it wvaries
in a systematic manner with Mach number. As a result, the proposed correla-
tion parameter, B', must be evaluated using a consistent set of data, i.e.,
the local heat transfer coefficient at a given time and the instantaneous
erosion rate. Since the heat transfer coefficients are known for the original
contour (Figure 2), then the logical erosion rate should be the initial or
early time value and not the TLR. To obtain this rate, the following data
reduction technique was used. For the correlation parameter discussed prev-
iously, it is assumed that the value remains constant for all heating rates,
thus,

T . -
B M /n? &P CQ
¢
h (t)
c (Equation 8)
and a2 = hC (t) B'
e C
e P
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Experimental Data Requirements (cont)

IT11.
Since the regression rate represents the rate of change of the local
radius and the heat transfer coefficient can be expressed as function of: the

(Equation 9)

radius by:
fo

h(t) = hO [r}

11.8
where, ho’ is the value at a radius, o then Equation 8 becomes,

= = p 2 _
dt (¢} r 0 C
c P
Integrating between the limits of time from zero to, O, gives
r(e _ 1+ 2.8506 1/2.8 (Equatloé 10)

r
o]
r
o]
which represents the value of the local radius at time, ©
From the above definition of the thickness loss rate, if the initial
radius were subtracted from Equation 10 and the result divided by the firing
duration, Of, an expression for the initial erosion rate as a function of the
average value is obtained,
(2.8) & o, 1/2.8
14— . -r (Equation 11)
r o /@f

TLR = r
o
o

noting that the measured erosion, Ar, is equal to TLR x (©), then
(Equation 12)

a ' 2.8
- Ar _ 1
[ + 1J 1 2.86,

r
0

The functional relationship indicated by Equation 12 is plotted in Figure 12.

[a}
o |o
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III. Experimental Data Requirements (cont)

The data reduction technique for evaluating the mass transfer correla-
tion parameter, thus consisted of four steps:

1. From the total erosion at the various measurement stations the
values of Ar, r, and Mach number are obtained.

2. TFor a given ratio of (Ar/r,) a corresponding value of (3,/ry) is
obtained from Figure 12,

3. At a given radius ry, (or Mach number) the local heat transfer
coefficient is obtained from Figure 2. This wvalue is scaled by pressure to
the 0.8 power to correspond to the average pressure occurring during the
respective firing.

4. The resulting value of 4, from Step 2 is then plotted as a function
of the heat transfer coefficient obtained in Step 3.

Typical results obtained in this manner for V-44, IBT-100 and IBS-107
are presented in Figures 13, 14, and 15, respectively. In the case of V-44,
a total of 5 separate firings are plotted. Firing numbers S/N I-2 and S/N I-3A
are noted to fall below the proposed correlation curve. This is presumably
due to the fact that certain materials tested during these firings exhibited
somewhat higher regression rates and thus reduced the heat transfer to the
selected V-44 sample. Similar conditions occurred during firing S/N III-4
for the IBT~100 material. As a result, these data were ignored in defining
the correlation curve in that only the higher erosion rates were considered
valid. From Figures 13 to 15 and the char density given in Figure 11, the
resulting correlation parameters for the three respective materials were
found to be:

Correlation
Material Char Density - o, Parameter - B'
Vb 28.9 1b/ft> 0.217
I1BT-100 35.2 0.210
IBS~107 14.5 0.074

With these data, all the required input parameters have been established.
There remains only the actual prediction of the thermal response.

Page 12



NASA CR-72583, Appendix III

IV. THERMAL RESPONSE CALCULATIONS

The thermal response of the three materials were predicted:at four
stations (five for the V-=44) which represent the extremes in environment.
The location of each station is noted in Figure 2. Due to the wide range of
heat fluxes, the correlation parameter was input to the program as a function
of temperature as depicted in Figure 16. This particular form was chosen on
the basis of the measured surface loss data. It was found that at low flux
(also surface temperatures less than 3000°F) the material loss could be pre-
dicted by considering only the char growth. As the heat flux increased a
threshold was reached where the measured erosion exceeded the predicted char
depth. Thus, surface removal becomes important and the correlation parameter,
B', provides a better prediction. Since the transition between the two regimes
is not considered a step function and in order to provide a smooth interpola-
tion curve for the computer the data of Figure 16 was used. With this model,
the resulting thermal response calculations are presented in Figures 17 through
28. Figures 17, 18 and 19 represent the density profiles (after complete cook-
out) which were predicted for V-44, IBT-100 and IBS-107, respectively. These
data depict the depth of the virgin layer, which is given by the location of
maximum density, the thickness of the char zone, region where the density
varies, and the thickness of material eroded, i.e., termination of density
profile.

As noted previously, the surface treatment prior to taking postfire
measurements removes a portion of the char layer. The exact percentage is
unknown, however, for the purpose of comparing the predicted data with measure-
ment a density reduction of 207 was assumed. A direct comparison of measured
erosion for each analysis station is presented in tabular form in Figure 20.
Also noted are the data from several firings which indicate a significant
range of measured wvalues occur at each respective measurement station. A
better correlation of the data is noted in Figure 21. Here the predicted
post-firing contour for V-44 is presented with the range of measured values
superimposed. It is now noted that at all stations, the predicted values lie
well within the range of measurements and the analytical model provides fairly
realistic results throughout the range of test data.

Figures 22 and 23 represent temperature data predicted for V-44 insu-
lation. The predicted thermal gradients of Figure 22 (Station 4) indicate
surface temperatures of the char attain values of 4100°R (3640°F) with ambient
values being reached within 0.125 in. of the surface. These data can be com~
pared with the thermocouple measurement obtained from firing S/N III-1.
Typical installation and approximate location of the thermocouple was shown
previously in Figure 3 of the main report text. Since the inner contour was
noted to vary slightly between firings, the exact location (depth with respect
to the surface) was not accurately known. Thus, provided the thermocouple
was located at a depth of approximately 0.44 as noted in Figure 22, the com-
parison of measured and predicted temperatures in Figure 23 is wvalid.
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IV, Thermal Response Calculations (cont)

Presumably, a better comparison is noted in Figure 25. These data represent

a comparison between the predicted temperature profiles for IBT-100 (Figure 24)
and the TC data of firing III-5. 1In this test the thermocouple was within the
zone which eroded during the firing. This is indicated by the loss of signal
at 9.7 sec at a measured value of 2237°F.

Similar data arepresented for IBS-107 in Figures 26 and 27. Again, if
the TC location was 0.35 in. below the original surface then a reasonable com-
parison exists.

The analytical model predicts thermal growth as a function of time per
the curves of Figure 28, Two distinctly different heat flux environments are
presented. The first represents the low-heat flux regions where negligible
surface removal occurs, only charring. As noted, the curves which represent
the interface between virgin and charred zone (about 500°F), indicates a
growth rate which is not linear but varies as the square root of time. In
the second region, the erosion rate being high, the char growth approximates
a linear rate. However, it is noted that due to the aforementioned variation
in heating rate due to erosion, the erosion rate is not quite linear but de-
creases slightly during the firing. As this data indicates, care must be
exercised in interpreting experimental erosion data on the basis of average
thickness loss rates. A better method is to match the measured char depth by
analytical calculations using the procedures outlined above.
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Symbol

N

Ar

Convective heat transfer coefficient, Btu/hr ft

NASA CR-72583, Appendix III

NOMENCLATURE

Throat area, in.

Erosion rate, in./sec

Pre~exponential coefficient in Equation 6
Frequency factor, 1l/sec

Correlation parameter for erosion

Specific heat of combustion products, Btu/lb°F
Mass flow coefficient, 1/sec

Activation energy, cal/mole

E/R, °K

h /C , 1b/hr ftz
c'p

2°F
Enthalpy, Btu/lb

Mass rate of char, 1lb/sec

Mach number

Order of reaction

Chamber pressure, 1b/in.2

Prandtl number

Convective heat flux, Btu/hr ft2

Gas constant, cal/mole °K

Radius, in.

Measured material loss, in.
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NOMENCLATURE (cont)

Symbol

T, - Stagnation temperature, °F or °R
T ~  Absolute temperature, °K

W ~ Sample weight, mg

TLR -~ Thickness loss rate, in./sec

TBL ~ Adiabatic wall temperature, °F or °R
TW ~  Burface temperature, °F or °R
v ~ Local velocity, ft/sec

Greek Symbols

Y - 1isentropic exponent

0 - density, lb/ft3

B -  TGA heating rate, °C/min
Y - Order of reaction

0 - Time, min or sec

x ~  See Equation 6

Subscripts

i - i th component
o - initial

T - remaining

f ~  final

¢ - char
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Gas Composition, moles/100 g Propellant)

Chamber Pressure, 500 psia Chamber Pressure, 1000 psia
Chamber Exhaust Chamber Exhaust

HC1 0.4768 0.5716 0.4807 0.5787
N, 0.3083 0.3098 0.3085 0.3098
H20 0.6046 0.5815 0.6145 0.5723
H2 0.9637 1.0196 0.9680 1.0331
02 0.0008 - 0.0006 -

0 0.0034 - 0.0023 -

OH 0.0399 0.0019 0.0340 0.0004
cl 0.0481 0.0084 0.0392 0.0025
NO 0.0030 0.0001 0.0026 -
Cl2 0.0001 - 0.0001 -

H 0.1423 0.0201 0.1159 0.0059
co 0.8887 0.8711 0.8886 0.8626
co, 0.0700 0.0876 0.0701 0.0961
Sio 0.0033 0.0033 0.0033 0.0023
SiO2 0.0001 - 0.0001 0.0010
Al 0.0004 - 0.0003 -
AlCl 0.0123 0.0001 0.0108 -
AlCl2 0.0221 0.0010 0.0250 -
AlCl3 0.0004 - 0.0006 -
Al0 0.0003 - 0.0002 -
Al1001 0.0001 - 0.0001 -
A1203 0.2636 0.2808 0.2629 0.2813
Fe 0.0006 - 0.0005 -
FeCl 0.0043 0.0046 0.0044 0.0042
FeCl2 - 0.0004 - 0.0007
Mol. Wt. 27.829 28.729 28.009 28.380
Temp, °F 5626 3714 5734 3320

Combustion Gas Compositions of ANB~3254 Propéllant

Figure 1
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Material

V=44

USR 3800

IBT-100

IBT-106

TI-H704B -

IBC-111
IBC-101
IBS-109

IBS-107

NASA CR-72583, Appendix III

(A/8)

9480.

646.1
.658 x 107

17

384

3.14 x 10

1.972 x 10°

.835 x 104

.818 x 10

O =

NO TIGA

5.528 x 107

3.98

6.87 x 10°

* First Reaction
*%*Second Reaction

Decomposition Rate Constants of Internal

Final Weight in Percent

E' n of Original Value
17024. 1.524 36.5
9592. 1.704 12. *
34794, 3.708 43.1 *%
51084. 5.725 40.6
33156. 3.188 40.0
18774 1.225 49.5 *
36684. 1.727 33.0 #%

(LIKE IBT-100)

26424, 3.07 35

8890. 1.964 20
16051. 1.855 19

Insulation Materials

Figure 11
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V=44

Analysis Station

Firing 1 (0.006)* 2 (0.043) 3 (0.0815) 5 (0.202)

I-1 0.088 in./sec 0.12 in./sec 0.202 in./sec 0.476 in./sec

I-2 0,053 0.12 0.195 0.360

I-3a 0.090 0.136 0.216 0.280

I11-2 0.087 0.140 0.226 0.473

ITI~3 0.066 0.172 0.327 0.63

III~-4 0.060 0.115 0.301 0.63

III-5 0.086 0.128 0.265 0.535

Average 0.0757 0.133 0.247 0.483

Predicted** 0.076 0.168 0.237 0.436
1B5-107

Firing 1 (0,006)* 2 (0.03)* 3 (0.065)* 4 (0.135)%

I-1 0.091 in./sec 0.101 in./sec 0.114 in./sec 0.193 in./sec

IIT-2 0.091 0.107 0.170 0.269

Average 0.091 0.104 0.142 0.232

Predicted 0.071 0.112 0.168 0.277
IBS-100

Firing 1 (0.006)%* 2 (0.03)* 3 (0.065)* 4 (0.135)%*

I-1 0.088 0.097 0.132 0.275

I-3a 0.072 0.086 0.123 0.185

III—4 0.077 0.092 0.121 0.193

III-5 0.088 0.080 0.197 0.352

Average 0.0813 0.0888 0.143 0.251

Predicted - 0.084 0.126 0.182 0.288

* Initial Mach Number
**Based on a 207 density loss

Comparison of Measured Erosion with Predicted Results

Figure 20
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